ERRATA

Erratum: Joint probability distribution for Stark-broadening calculations [Phys. Rev. A 34, 4091 (1986)]

Ronald L. Greene
[S1063-651X(98)04804-1]
PACS number(s): 52.25.-b, 34.20.-b, 99.10.+g

In plasmas, the emitting atoms and ions are under the influence of electric fields caused by electrons and ions [1,2]. The mean distance r_{0} between ions is defined by [1,2]

$$
\begin{equation*}
(4 \pi / 3) r_{0}^{3} n=1 \tag{1}
\end{equation*}
$$

and not

$$
4 \pi n r_{0}^{3}=1
$$

as I have given in my paper. In the above equations, n stands for the ion density.
In Eq. (9), I should have $a r_{2} / r_{0}$, and not $a r_{2}$, because the argument of the exponential must be dimensionless.
Finally, the units for $Q(r, E)$ are $0.01 \varepsilon_{0}^{-3}$ and not $0.01\left(r_{0} \varepsilon_{0}\right)^{-3}$. This is obvious from Eq. (4) by taking $A(\mathbf{r}, \mathbf{E})=1$. However, it should be emphasized that the noted errors have no effect on my calculations since they were carried out with units such that $\epsilon=1$ and $r_{0}=1$.

I wish to acknowledge Ilunga S. K. Mwana Umbela for pointing out these errors.
[1] Hans. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
[2] Hans R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964).

Erratum: Dilute gas Couette flow: Theory and molecular-dynamics simulation [Phys. Rev. E 56, 489 (1997)]

Dino Risso and Patricio Cordero
[S1063-651X(98)07006-8]

PACS number(s): 05.20.Dd, $47.50 .+\mathrm{d}, 51.10 .+\mathrm{y}, 99.10 .+\mathrm{g}$

Due to a mistake in a coefficient in one of our Maple three-dimensional routines, the expressions in the Appendix of the original article are wrong. The correct expressions are given below. Exact expressions are simpler when expressed in terms of $\gamma_{s} \equiv \frac{2}{5} \gamma$, where $\gamma=\tau v_{x}(z)^{\prime}$ and $\tau=5 \sqrt{m T(z) / \pi} /\left(16 \sigma^{2} p\right)$. The hydrostatic pressure, like the adimensional shear rate γ, is uniform and, $p=P_{z z}-\frac{6}{5} \gamma P_{x z}$. Series expansions are in terms of γ itself. The expression $\Delta_{3}=\sqrt{1+29 \gamma_{s}^{2}-54 \gamma_{s}^{4}}$ appears everywhere:

$$
\begin{align*}
\frac{\eta}{\eta_{0}} & =\frac{2}{1+18 \gamma_{s}^{2}+\Delta_{3}} \\
& =1-\frac{13}{5} \gamma^{2}+\frac{5282}{625} \gamma^{4}+\cdots \tag{1}
\end{align*}
$$

$$
\begin{align*}
\frac{P_{x z}}{P_{z z}} & =\frac{-5 \gamma_{s}}{1+3 \gamma_{s}^{2}+\Delta_{3}} \\
& =-\gamma+\frac{7}{5} \gamma^{3}-\frac{2282}{625} \gamma^{5}+\cdots, \tag{2}\\
\frac{k_{x z}}{k_{0}}= & \frac{-\frac{35}{2} \gamma_{s}\left(1-\frac{9}{5} \gamma_{s}^{2}\right)}{1+\frac{15}{2} \gamma_{s}^{2}+\left(1-\frac{63}{4} \gamma_{s}^{2}\right) \Delta_{3}} \\
= & -\frac{7}{2} \gamma+\frac{1379}{500} \gamma^{3}-\frac{87647}{5000} \gamma^{5}+\cdots, \tag{3}\\
\frac{k_{z z}}{k_{0}} & =\frac{4}{1-54 \gamma_{s}^{2}+3 \Delta_{3}} \\
& =1+\frac{21}{50} \gamma^{2}+\frac{6783}{2500} \gamma^{4}+\cdots, \tag{4}\\
\frac{q_{x}}{\gamma q_{z}}= & -\frac{7-\frac{63}{5} \gamma_{s}^{2}}{1-3 \gamma_{s}^{2}+\Delta_{3}} \\
= & -\frac{7}{2}+\frac{1057}{250} \gamma^{2}-\frac{30653}{3125} \gamma^{4}+\cdots \tag{5}
\end{align*}
$$

The differential equation for the temperature profile $T(z)$ has the same form [Eq. (25)] as in the two-dimensional case except that instead of the constant K now appears K_{3},

$$
\begin{equation*}
K_{3}=\frac{\frac{64}{15}\left(8-63 \gamma_{s}^{2}\right)\left(1+54 \gamma_{s}^{2}\right)^{2} \gamma_{s}^{2}}{1+\frac{927}{14} \gamma_{s}^{2}+\frac{40689}{14} \gamma_{s}^{4}-3645 \gamma_{s}^{6}+\left(1+\frac{891}{7} \gamma_{s}^{2}+486 \gamma_{s}^{4}\right) \Delta_{3}} \pi \sigma^{4} P_{z z}^{2} \tag{6}
\end{equation*}
$$

In the following expressions appear $f(\gamma)$, which we define so that $\sqrt{2 K_{3}}=f(\gamma) \sigma^{2} P_{z z}$.
When the differential equation for $T(z)$ is integrated the value $T_{\text {max }}$ at the center of the channel is introduced exactly as in Eq. (26) of the original paper, with K replaced by K_{3}. The boundary and integral conditions render three conditions relating the constants $P_{z z}, \gamma$, and $T_{\max }$ with the parameters externally imposed on the system like v_{0}, T_{0}, the number density $N_{x y}$ of particles per unit area (in the Z direction), etc., and the parameters of the system like σ, L_{z}. The results are

$$
\begin{gather*}
\sqrt{T_{\max }-T_{0}}=\frac{5 v_{0}}{32 \gamma} \sqrt{\frac{m}{\pi}} \frac{f(\gamma) P_{z z}}{p}, \tag{7}\\
P_{z z}=\frac{2}{\sigma^{2} L_{z} f(\gamma)}\left(T_{0} \sqrt{\frac{T_{\max }-T_{0}}{T_{0}}}+T_{\max } \arctan \sqrt{\frac{T_{\max }-T_{0}}{T_{0}}}\right), \tag{8}\\
N_{x y} \sqrt{T_{\max }-T_{0}}=\frac{5 v_{0}}{16 \sigma^{2} \gamma} \sqrt{\frac{m}{\pi}} \arccos \left(\frac{2 T_{0}-T_{\max }}{T_{\max }}\right) . \tag{9}
\end{gather*}
$$

We thank V. Garzó for pointing out that there was something wrong with our Appendix.

